Are You as Smart as a Machine? Learning about Machine Learning Caleb Bradberry, Ph.D.

> RADFORD UNIVERSITY

Computing and Information Sciences

About Me

- Grew up in West Virginia
- Undergraduate
 - Marshall University: B.S. in Information Technology
 - Marshall University: B.B.A. in Information Systems
- Graduate
 - Marshall University: M.B.A. Thesis: An Econometric Projection of Coal Sustainability for W.V.
 - UNC Greensboro: Ph.D. Dissertation: A Design Science Framework for Healthcare Analytics
- Professional
 - Assistant Professor of Information Systems Radford University
 - ITEC145 Data Ethics, Privacy, and Security
 - ITEC200 Healthcare Information Systems
 - ITEC369 Systems Analysis and Design
 - ITEC375 Data Science with R and Python
 - ITEC485 Decision Support Systems
 - ITEC685 Advanced Data Science

Some Questions to Think About

- How can we proactively predict a heart attack using smart devices?
- How can we predict a patient that is at risk of being readmitted after a heart failure?
- How can we better identify the structure of cancer?
- How can we identify students at risk of failing out of the university?
- Can we use the characteristics of a successful student's schedule to create better schedules?
- How can we predict stock prices? Sports outcomes? Cryptocurrency prices?
- How does the dog filter on Snapchat track my face?
- How does Amazon recommend items?
- WHAT IS WITH THIS FACEBOOK AD?! I ONLY THOUGHT ABOUT BUYING IT
- How is TikTok recommending me this stuff?!

How can a machine learn?

- Ipse se nihil scire id unum sciat
 - """I know that I know nothing" Plato" Decartes"
 - -Michael Scott
 - Nothing says a light conversation like philosophy of science
- Big words:
 - Ontological Knowledge
 - "What is the thing"
 - Domains and Boundaries
 - Epistemological knowledge
 - "How is the thing"
 - Belief, truth, and justification
 - A priori, a posteriori, and ex post facto
 - Analytic-Synthetic distinction Immanuel Kant

Wait what?

- We're not done with philosophy of science yet:
- Falsification
 - Karl Popper "All swans are white and have always been white," can be proven false
 - "In 1697, black swans were observed on the shore of the Swan River in Australia."

- This is the concept of refutation
- Thomas Kuhn scientific theories are social constructs
 - Accurate, consistent, broad scope, simple, and fruitful
- How do we ask a machine a question?
 - Modeling.
 - Labels
 - Features
 - Factors
 - Statistics, computer science, and a knowledge domain

Image labeling

http://labelme.csail.mit.edu/Release3.0/

https://github.com/microsoft/VoTT

Types of Machine Learning

- Approaches:
 - Supervised, Unsupervised, and reinforcement
- Processes:
 - Classification
 - Clustering
 - Regression
 - Anomaly Detection
 - Association Rules
 - Structured Prediction
 - Decision Tree

- Models:
 - Neural network
 - Support vector machine

- Bayesian
- Genetic
- Problems
 - Bias
 - Model underfit
 - Model overfit
 - Sampling

Supervised, Semi-supervised, Unsupervised Learning

- All types use training data, testing data, and validation
- Some have inputs and a desired output
 - Think of it like regression
 - (or y=mx+b, we are slapping a line through some data)
 - Outcome = Factor1+Factor2
 - Y (outcome) = mx1(factor1) + mx2(factor2) + error
 - StudentRetention ~ GPA + MidtermGrade + Gender + Dorm
- Unsupervised does not have an objective/outcome function
 - How does data group together?
 - Clustering
 - (Correlation matrix)

Fail to Reject the Null

- Machine learning's underpinnings are statistical, so we work with statistical language
 - Hypothesis testing
 - We reject the null hypothesis when evidence emerges to support the alternative hypothesis
 - When we have no evidence, we failed to reject the null hypothesis
- What did you just call me?
 - Remember falsification and the black swan? We had no evidence of a black swan, until we did. We failed to reject the null hypothesis
- Let's make it more confusing

Confusion and Statistics: A Confusion Matrix

	Observed Positive	Observed Negative
Prediction positive	True Positive	False Positive (Type I error)
Prediction Negative	False Negative (Type II error)	True Negative

RADFORD UNIVERSITY

Accuracy:

Σ True positive + Σ True negative/Σ Total population Precision:

 Σ True positive/ Σ Predicted positive Recall/Sensitivity

 Σ True positive/ Σ Condition positive Specificity

 Σ True negative/ Σ Condition negative

Associations

- Two types of pitfalls can occur that affect the association between exposure and disease
 - Type 1 error: observing a difference when in truth there is none
 - Type 2 error: failing to observe a difference where there is one.

Interpreting Epidemiologic Results

Four possible outcomes of any epidemiologic study:

REALITY

YOUR	H ₀ True	H ₁ True
DECISION	(No assoc.)	(Yes assoc.)
Do not reject H ₀	Correct	Type II
(not stat. sig.)	decision	(beta error)
Reject H ₀	Type I	Correct
(stat. sig.)	(alpha error)	decision

Four possible outcomes of any epidemiologic study:

	REALITY	
YOUR	H ₀ True	H ₁ True
DECISION	(No assoc.)	(Yes assoc.)
Do not reject H ₀	Correct	Failing to find a
(not stat. sig.)	decision	difference when
		one exists
Reject H ₀	Finding a	Correct decision
(stat. sig.)	difference when	
	there is none	

Type I and Type II errors

• α is the probability of committing type I error.

• β is the probability of committing type II error.

"Conventional" Guidelines:

• Set the fixed <u>alpha</u> level (Type I error) to 0.05 This means, if the null hypothesis is true, the probability of incorrectly rejecting it is 5% or less.

DECISION	H ₀ True	H ₁ True
Here Do not reject H ₀		
(not stat. sig.)		
Reject H ₀	Type I	
stat. sig.)	(alpha error)	

Receiver Operating Characteristic (ROC) Curve

- WHY ARE YOU DOING THIS?!
 - World War II radar technology: How did the British allied forces know the difference between a friendly bomber and a German blitzkrieg?
 - The operator of the person using the radar was measured as to how correct or incorrect their detection was

ROC in Action

Training and Testing

- How can we know if our model works? If our prediction was true?
 - Train the algorithm on a set percentage of data (50-80%)
 - Test the **-trained model-** against the remaining data to see if the data fits the model (imagine drawing a line on a slope, trying to fit that line into the next dot)

Beyond Stats: Machine Learning Types

- Very basic modeling: linear regression
- Generalized linear model (supervised)
 - Basic linear model
 - diamondPrice = cut + carat + clarity + color
 - Interpretation is a straightforward unit increase/decrease
 - Logit model
 - studentRetention = GPA + Midterm + cardSwipes
 - Interpretation is an odds ratio, what is the 'likelihood of the thing'

ML Types: Neural Networks

- Artificial neural network
 - Linear modeling
 - Classification and prediction
- Convolutional neural network
 - Visual modeling (Style transfer)
 - Image generation (Deep dream, Deep Fake)
 - Generative adversarial neural network [GANN] (DeepFake, ThisPersonDoesNotExist)

- Recurrent neural network
 - Time-varying, backwards propagation
 - Gradient descent
 - Self organizing map
 - Music generation
- Adversarial Neural Network
 - Typically a GANN, but other configurations exist

Real faces

Reinforcement Learning (Recurrent Neural Network)

- Actions to maximize an outcome
 - Game theory
 - Information theory
 - Simulation
 - Markov Decisions
- Rain, sprinklers, and is the grass wet?
 - Bayesian network
 - Email filters
- Examples:
 - LSTM algorithm (stock prediction)
 - TensorFlow Magenta https://magenta.tensorflow.org/

NLP: Natural Language Processing

- Two types: rule based, statistical
 - Evolved into statistical using probabilistic decisions
- Okay Google, Hey Siri, Alexa reorder...
- Grammar Induction
 - Rules of the language
- Morphological segmentation
 - Root: the word open. Opens, opened, opening
- Parts-of-speech labeling
 - Subject noun verb predicate
- Stemming
- Latent Dirichlet allocation
- This is why you get ads for stuff you were talking about or thinking about.

Limitations: Bias

- Facial recognition trained on a subset of demographics
 - We use data available, and if that data is 93% Caucasian, the network will classify Caucasian better than other skin tones
- Microsoft's Twitter Chatbot
 - People were able to send it messages of any kind: it evolved to pick up on racist and sexist language
- Identifying student retention
 - I trained a neural network to predict retention, but the goal was to predict attrition

Limitations: Model Fit

ML and the Real World

- Hospital Readmissions
- Heart Failure Prediction
- Student Retention
- Student Scheduling
- Auto-coloring filters
- Face recognition
- Purchase likelihood

ML: Ethics

- Ownership
 - Who owns data?
- Transparency
 - How is the data collected, aggregated used?
- Consent
 - If your personal data is being used, did you consent?

- Privacy
 - Who can see what about you?
- Currency
 - Who is profiting from your data?
- Openness
 - Can you access the data about you?

Some starting resources

- AWS Compute Time \$100
 - <u>https://aws.amazon.com/education/awseducate/</u>
- Microsoft Azure \$100 credit
 - <u>https://azure.microsoft.com/en-us/free/students/</u>
- Google GPU \$300 free
 - <u>https://cloud.google.com/free/</u>
- R and R Studio
 - <u>https://www.r-project.org/</u>
 - <u>https://www.rstudio.com/</u>
- Anaconda Python Installer (Spyder IDE recommended)
 - <u>https://www.anaconda.com/distribution/</u>
- Keras Deep Learning Library
 - <u>https://keras.io/</u>
- Reddit Learn Machine Learning
 - <u>https://www.reddit.com/r/learnmachinelearning/</u>